Histone deacetylase SIRT1 modulates neuronal differentiation by its nuclear translocation.
نویسندگان
چکیده
Neural precursor cells (NPCs) differentiate into neurons, astrocytes, and oligodendrocytes in response to intrinsic and extrinsic changes. Notch signals maintain undifferentiated NPCs, but the mechanisms underlying the neuronal differentiation are largely unknown. We show that SIRT1, an NAD(+)-dependent histone deacetylase, modulates neuronal differentiation. SIRT1 was found in the cytoplasm of embryonic and adult NPCs and was transiently localized in the nucleus in response to differentiation stimulus. SIRT1 started to translocate into the nucleus within 10 min after the transfer of NPCs into differentiation conditions, stayed in the nucleus, and then gradually retranslocated to the cytoplasm after several hours. The number of neurospheres that generated Tuj1(+) neurons was significantly decreased by pharmacological inhibitors of SIRT1, dominant-negative SIRT1 and SIRT1-siRNA, whereas overexpression of SIRT1, but not that of cytoplasm-localized mutant SIRT1, enhanced neuronal differentiation and decreased Hes1 expression. Expression of SIRT1-siRNA impaired neuronal differentiation and migration of NPCs into the cortical plate in the embryonic brain. Nuclear receptor corepressor (N-CoR), which has been reported to bind SIRT1, promoted neuronal differentiation and synergistically increased the number of Tuj1(+) neurons with SIRT1, and both bound the Hes1 promoter region in differentiating NPCs. Hes1 transactivation by Notch1 was inhibited by SIRT1 and/or N-CoR. Our study indicated that SIRT1 is a player of repressing Notch1-Hes1 signaling pathway, and its transient translocation into the nucleus may have a role in the differentiation of NPCs.
منابع مشابه
Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1.
Sir2 (silent information regulator 2) is an NAD(+)-dependent histone deacetylase that contributes to longevity in yeast. SIRT1, a mammalian Sir2 ortholog, deacetylates histones and various transcription factors, including p53, FOXO proteins, and peroxisome proliferator-activated receptor-gamma. We found that its subcellular localization varied in different tissues of the adult mouse. Some subse...
متن کاملThe type III histone deacetylase Sirt1 protein suppresses p300-mediated histone H3 lysine 56 acetylation at Bclaf1 promoter to inhibit T cell activation.
The NAD-dependent histone deacetylase Sirt1 is a negative regulator of T cell activation. Here we report that Sirt1 inhibits T cell activation by suppressing the transcription of Bcl2-associated factor 1 (Bclaf1), a protein required for T cell activation. Sirt1-null T cells have increased acetylation of the histone 3 lysine 56 residue (H3K56) at the bclaf1 promoter, as well as increasing Bclaf1...
متن کاملCollapsin response mediator protein 3 deacetylates histone H4 to mediate nuclear condensation and neuronal death
CRMP proteins play critical regulatory roles during semaphorin-mediated neurite outgrowth, neuronal differentiation and death. Albeit having a high degree of structure and sequence resemblance to that of liver dihydropyrimidinase, purified rodent brain CRMPs do not hydrolyze dihydropyrimidinase substrates. Here we found that mouse CRMP3 has robust histone H4 deacetylase activity. During excitot...
متن کاملSIRT1 regulates the neurogenic potential of neural precursors in the adult subventricular zone and hippocampus.
Within the two neurogenic niches of the adult mammalian brain, i.e., the subventricular zone lining the lateral ventricle and the subgranular zone of the hippocampus, there exist distinct populations of proliferating neural precursor cells that differentiate to generate new neurons. Numerous studies have suggested that epigenetic regulation by histone-modifying proteins is important in guiding ...
متن کاملReciprocal roles of SIRT1 and SKIP in the regulation of RAR activity: implication in the retinoic acid-induced neuronal differentiation of P19 cells
Human sirtuin 1 (SIRT1) is a NAD(+)-dependent deacetylase that participates in cell death/survival, senescence and metabolism. Although its substrates are well characterized, no direct regulators have been defined. Here, we show that SIRT1 associates with SKI-interacting protein (SKIP) and modulates its activity as a coactivator of retinoic acid receptor (RAR). Binding assays indicated that SKI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 40 شماره
صفحات -
تاریخ انتشار 2008